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A new algorithm is proposed for synthesizing a delayed on-off control for tracking slow motions of a certain class of mechanical 
systems. The conditions for a control to exist are found and examples are given of the solution of the tracking problem for inverted 
and double inverted pendulums. © 2005 Elsevier Ltd. All rights reserved. 

In systems of variable structure [1] the control function is generally discontinuous. The sliding mode 
method [2] is an important tool for constructing robust controls. Publications presenting the ideas which 
later became the basis of the sliding mode control method first appeared in the middle of the last century 
[3]. Sliding mode control methods have been widely used in control problems for various systems: 
electromechanical systems [4], pendulums [5], and many others. 

To overcome difficulties due to the presence of delay in the control, a method employing what are 
known as ~-stabilizing solutions [6] will be proposed below. 

There is a considerable literature on the subject of the control of electromechanical systems. Existence 
conditions have been established for motions of robot manipulators in the decomposition mode, taking 
into account the dynamics of the slave organs; the form of control laws has been found and the set of 
motions of the manipulator constructed [7]. Examples have been presented of the stabilization of the 
programmed manifold of a manipulator on a moving base and the stabilization of the programmed 
orientation of a pursuing body [8]. Controlled plane motions of a two-link mechanism along a horizontal 
plane have considered [9]. It has been proved [10] that in the problem of controlling an n-link 
manipulator having a singular mode of order 2m, the optimal paths reach the singular mode in a finite 
time, and the optimal control has an infinite number of switchings. Algorithms have been proposed for 
controlling an asynchronous electric drive, based on the method of separation of motions, in problems 
of control and identification; tracking based on the speed and angle of rotation of the motor shaft has 
been considered [11]. 

In the development of these result, a new algorithm will be presented below, for synthesising an on- 
off control for mechanical systems, taking into account the presence in the control of a time delay; this 
has not been done in previous treatments [7-11]. The control is assumed to be of the on-off type, as 
in [7, 10], which is dictated by its ease of application. The synthesis of a control with delay for a mechanical 
system is based on linearizing the initial system [12] in the neighbourhood of the tracked path and 
subsequently decoupling the system of second-order equations as two subsystems of first-order equations 
with the desired properties: a stable system, and an unstable system for which a control is constructed 
and whose output is the input for the stable system. To decouple the system, one uses the method 
described in [13], involving the solution of a quadratic matrix equation. Algorithms constructing a control 
for a mechanical system are presented in both vector and scalar cases. The quality of the control is verified 
by the results of numerical simulation, in the scalar case - of the equation of an inverted pendulum, 
and in the vector case - of the equation of a double inverted pendulum. 

tPrikl. Mat. Mekh. Vol. 69, No. 1, pp. 30-41, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
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: . 1. S T A T E M E N T  OF T H E  T R A C K I N G  P R O B L E M  IN 
T H E  G E N E R A L  CASE 

Consider a system of the form 

F(x(t),  x(t), x(t))  = u ( t -  h) (1.1) 

where F : R 3n ---) R" is a smooth mapping, x(t) is an n-dimensional vector-valued function, u E R n is a 
vector control, R ~ is Euclidean n-space, and h > 0 is a time delay. 

System (1.1) will be considered together with an initial function 

x(t) = ~ ( t )  for t~  [-h, 0]; ~ ( t )  = (91(t) . . . . .  ~.(t))  r 

To describe the class of feedback controls u we introduce a set Q of pairs of mappings S : R n ~ R ~, 
G : R ~ ---) R ~. We will seek feedback controls in the form 

u ( t - h )  = G ( s i g n S l ( X ( t - h ) )  . . . . .  s i g n S k ( x ( t - h ) ) ) ,  h > 0  

(S, G) ~ Q, S ----- ( S  1 . . . . .  Sk) 
(1.2) 

Let  us assume that the system must track some object. To describe the tracked path, we introduce a 
mapping x*(t ) : R ~ R n, which is the state vector of the tracked object. The tracking problem is to find 
a control u ( t - h )  guaranteeing that the deviation of the system (1.1) from the tracked path at any instant 
of t ime will be small in some sense. 

Definition. We shall say that a solution of system (1.1) tracks x*(t) if, for fixed 8 > 0, there exist 
= ~(8)~ a number k _ n, and a pair of mappings (S, G) ~ Q such that, for an initial function ~( t )  

satisfying the condition II -x*(0)II  < the solution of the system 

F(x(t),  x(t), x(t))  = G(signSl(X(t- h)) ..... signSk(X(t- h))) 

x(t) = ~ ( t ) ,  - h < t < 0  

satisfies the inequality 

IIx(t)  - x * ( t ) l l  < 8 ,  Vt _> 0 

The norms of a constant matrixA and constant vector b are defined as 

n 

IIAII = max ~}aol;  Ilbll = max Ibel 
l < i < n ,  l < i < n  

. / = 1  

For variable matrices A(t) and vectors b(t) the corresponding norms will be 

n 

IIAII = max max ~ lad; IINI = max m a x  Ibil 
t>O l < i < n ,  t>O l < i < n  

j = l  

2. T R A C K I N G  P R O B L E M  F O R  A S E C O N D - O R D E R  S C A L A R  S Y S T E M  

Statement of the problem. Consider the  scalar second-order differential equation 

Y = f ( x , . f ) + u ( t - h ) ,  x E  R (2.1) 

w h e r e f :  R 2 ---> R is a twice continuously differentiable function and u is a delayed control. Let  ~)(t) be 
the initial function andx*(t) the tracked path. We have to indicate the constraints imposed on the system 
and the tracked object, and also to select a control in the form of (1.2), dependent on a fixed 8 > 0 and 
the parameter values, in such a way that the system will follow the path x*(t) with a tracking error not 
exceeding 8. 
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Fundamental  theorem. We transform system (2.1). Let y(t) = x(t) - x * ( t )  denote the tracking error. 
In variables y, system (2.1) will have the form 

y = f ( y + x * , ~ + Y c * ) - J ( * + u ( t - h ) ,  y ~ R  (2.2) 

Linearizing the latter system, we have 

Ly = y(t) - a*( t )p( t )  - b*( t )y ( t )  = f * ( t )  + g(y, ) )  + u ( t -  h) (2.3) 

where 

a* = Of(x*,~*)lOp,  b* = Of(x*, Yc*)IOy, f * ( t )  = f ( x * ( t ) , . ~ * ( t ) ) - X * ( t )  

g(y, 3)) = o(y  2, 3) 2) is the remainder term of the expansion. It is well known that a positive constant N1 
exists such that, if ly[ 2 + [3)[2 < v (v > 0), the following inequality holds 

Ig(Y, ~)1 -< N1 (lYl 2 + I~12) 
For fixed t, the eigenvalues of the operator Ly are 

~'1, 2(t) = [a*(t) _+ J (a*( t ) )  2 + 4b*( t )] /2 ,  0<t_<+oo  

(2.4) 

Let us assume that the eigenvalues are simple and real, and 

]{~,,(t)ll<~,m~x<+°°, ~ 2 ( t ) < - q < 0 ,  V t > 0  (2:5) 

We shall consider the case of slow motions x*, which guarantees that d~i(t)/dt (i = 1, 2) will be small. 
Put Co = 1 + 1/q. 

then 

L e m m a  1. If for given e > 0 

[p(t) - ~.2(t)y(t)] < e, t ~ [0, T] (2.6) 

Ig(y(t),~9(t))[ < Ne  2, t~  [0, T]; N = Nl(c0Z+(1 +~maxC0) 2) (2.7) 

Proof. We may infer from relation (2.6), using the reverse triangle inequality, that 

lyl < E + ~'max [Yl (2.8) 

Estimating the solution of the system 

)( t)-~,2(t)y(t)  = z(t); y(0) = Y0 = ~(0)-x*(0) (2.9) 

using the second inequality of (2.5), we obtain 

t 
[y[ < e-qtlyo[ + fe-q(t-S)[z(s)[ds < e-qt + 1 q e < 1 + e = Coe (2.10) 

0 

Estimate (2.7) follows from estimates (2.4), (2.8) and (2.10). 

We now proceed directly to the construction of the control. Since dL2(t)Mt is small, the left-hand side 
of Eq. (2.3) may be written as (d/dt - )~j(t))(d/dt - )~2(t))y(t). Substituting . . . . .  

z(t) = y ( t ) - ) ~ z ( t ) y ( t )  

we obtain the following problem 

~(t) = )~l(t)z(t)+ f * ( t ) + g + u ( t - h ) ,  t>O 

Z(t) = ~z(t) = ( d ) - ~ * ) - ~ , 2 ( t ) ( ~ - x * ) ,  t e  [-h, 0] (2,11) 
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The control u(t  - h) will be sought in the form 

u( t - h) = - p  signz( t - h) (2.12) 

where p > 0 is the control parameter. Put e0 --- e/Co. 

Theorem 1. Suppose a number e > 0 is given, relations (2.5) are true, and in addition the following 
assumptions hold: 

(1) a positive constant M exists such that 

[If*(t)ll < M (2.13) 

(2) the initial function satisfies the inequality 

max{ly(O)l, Iz(O)l } < ~i (2.14) 

(3) the control has the form (2.12) 
(4) the quantities ~,max, M and 8 satisfy the inequalities 

(2.15) 

\~'max~0 ~ + 

(5) p = ix'e0, where 

~'max + M + NE 0 < ~, < ~'max E0 - ~ekm~h M _ N e  ° (2.16) 
E0 i~0(e~'maxh _ 1) gO 

Then the solution of system (2.1) will follow the path x*(t) by means of the control (2.12), with a 
tracking error not exceeding e. 

Proof. We will prove that 

Iz(t)l < e 0, Vt > 0 (2.17) 

Note that this inequality guarantees the truth of the estimate Ix(t) -x*(t) I < c0e0 = e (see the proof 
of Lemma 1), which proves the theorem. The proof will be reductio ad absurdum. Suppose an instant 
of time T > 0 exists such that Iz(T) [ = e0. We may assume without loss of generality that z(T) > 0 (the 
proof in the case z(T) < 0 is analogous). Then there are two possible cases. 

1. For any instant of time 0 < t < T, we have 0 < z(t)  < e0. In that case it follows from Lemma 1, 
inequality (2.13), Eq. (2.11), and the boundedness of )~l(t) that 

~(t)<-kmaxZ(t)+~ l, Vt~ [0, T]; 51 = M + N l ~ 2 + a ' e o  

Using inequality (2.14), we infer from this inequality, by the Gronwall-Bellman lemma, that at time T 

k~x T 
z(T) < (5 + 81/Z, max)e - ~l/~'max 

Using the right-hand inequality in (2,16), we get 

1 ~'maxE0 + 51 
T>_~-~axln ~eo+~l  >h  

But this means that the following estimate is true over the interval [h, 7] 

£(t) < ~,maxe0 + 51  -- 2ct'e o < 0 

if the left-hand inequality of (2.16) is used. Thus z(h)  < e0, and the solution decreases on [h, T]. Hence 
z(T) < e0. We have obtained a contradiction. 
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2. A point to < T exists such that Z(to) = e0 and 0 < z(t) < e0 for t e (to, 7]. Reasoning analogous to 
that employed in case 1 ° shows that z(T) < e0. Again we have obtained a contradiction. 

Thus inequality (2.17) is established. 

The tracking algorithm. Summarizing what has been said up to now, we can formulate the following 
tracking algorithm for a second-order equation. Suppose we are given a maximum delay h in the 
equation, a tracked path x*(t) satisfying condition (2.13) and the first condition (2.15), and an initial 
function satisfying condition (2.14) and the second condition of (2.15). The tracking algorithm is a follows. 

1. Fix~ > 0. 
2. Find £1(0 and ~2(t). 
3. Choose a control parameter satisfying condition (2.16). 

The tracking problem for an inverted pendulum. The equation of a controllable inverted pendulum is 

O(t)+kO(t) -ps inO(t)  = u ( t - h ) ,  p = ~ l  (2.18) 

where 0 is the angular deflection of the pendulum from the vertical axis, k is the coefficient of friction, 
l is the pendulum length, u is the control, and h is the delay. 

Let 0*(t) be the tracked path. Then a*(t) = -k,  b*(t) = p cos0*(t). The eigenvalues of the linearized 
system will be 

kl. 2(0 = ( -  k + ~[k 2 + 4pcosO*(t))12 

If the radicand is positive for all t, the eigenvalues of the linearized system are non-zero, simple and 
real, and moreover Le(t) --- --q < 0. 

Figure 1 illustrates the result of the simulation. The parameters are 

0*(t) = sin(0.1t)exp(-0.05t), k = 0.3, p = 0.04, h = 0.1, ~ = 0.05, ~' = 5.6, ~(t) = 0.001, 
)Lma x = 0 . 1 ,  q = 0.35 

The norm of the tracking error is 0.013. 

3. THE C O N T R O L  OF A M E C H A N I C A L  SYSTEM 

Statement of  the problem. Consider a mechanical system of the form 

H(q)q + L(q, el) = u ( t -  h), q ~ R" (3.1) 

where q is the vector of generalized coordinates, H(q) is  the inertia matrix of the masses of the links, 
whose norm satisfies the estimate 

I/H+<IIH(q)II < 1/H-, q ~  Rn; 0 < H - < H  + (3.2) 
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L(q, q) is a matrix including the relations of the forces and momenta between the masses, as wellas 
the gravity and friction forces, u is the control vector, and h > 0 is a constant delay. 

Let q*(t) : R ~ R ~ denote the state vector of the tracked object. We shall assume that the supporting 
path q*(t) reaches the input of th e system instantaneously (or with a very small, negligible, delay): As 
before; we shall assume that q*(t) is a slow motion. 

Suppose we are given an initial function ~(t)  = (~l(t), , ~,,(t)) ~. 
The tracking system may be written as 

H(q)~ i+L(q ,q )  = u ( t - h ) ,  t > 0 ;  q(t) = O(t), - h < t < 0  (3.3) 

The problem is to find an equation of the type (1.2) guaranteeing that the solution of system (3.3) will 
be close to the function q*(t). 

Decoupling a system o f  n second-order equations. Consider the linear system • 

H x + P x + W x  = 0, x~  Rn; d e t H~ 0  (3.4) 

where H, P and W are constant n × n matrices. Multiplying both sides of the last equation on the left 
by H -1, We obtain 

x +  H - I P x  + H - I w x  = 0 (3.5) 

Let y = (xl, ... , xn, A1, ... , An) ~. Transforming to a system of 2n first-order equations, we obtain 
= My,  where M is a 2n × 2n partitioned matrix: 

M 0 I" 
= ( 3 . 6 )  

_ H - 1 W  _H-1p  

where O is the n × n zero matrix and I n is the n × n identity matrix. 
Let ~(M) denote the spectrum of the matrixM. Let ~"i E ( Y ( M )  be the real eigenvalues in the left half- 

plane, and let h i be the corresponding eigenvectors, i = 1, 2 . . . . .  n. Write the vectors hi as columns of 
a 2n × n matrix U. We obtain 

u = . . . . .  h . )  = U2) 

I] , , l  hi h2 ... hn "1 "2 . . .  h~ 
U 1 = . . . . . . . . . . . . . .  U 2  = . . . . . . . . . . . .  

n n n 2n 2n 2n 
hi h 2 ... h n hi h2 hn 

L e m m a  2. Suppose all the eigenvalues of the matrixM are simple and the matrix U1 is invertible. Let 

C_ = U2U11, C+ = - H - 1 p -  U2U-~ 1 (3.7) 

Then system (3.5) may be represented as 

( l n d / d t -  C+) ( Ind /d t -  C_)x = 0 (3.8) 

and 

C++C_ = - H - I P ,  C+C = H-1W (3.9) 

~(C+) u~ (C_)  = ~(M), ~ ( C )  = {~1 . . . . .  Z.,} (3.i0) 

Proof. Writing system (3.8) in the form 

g - (C÷ + C_)x + C+C_ x = 0 

and comparing with system (3.5), we obtain relations (3.9). 
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It follows from these relations that X = C_ satisfies the quadratic matrix equation 

X2+H-Ipx+H-IW = 0 (3.11) 

We will show that the matrix C_, defined by the first equality of (3.7), is a solution of this equation. Let us consider 
(3.6) as the matrix of an operator defined in the space R 2n. The subspace L,  spanned by the vectors ha . . . .  , h, is 
an invariant of the operator. Then the matrix ML = diag@l . . . . .  ~'n) satisfies the equality 

M U  = U M  L 

from which, using the partitioned structure of the matrices M and U, we conclude that 

U 2 = UIM L, - H - I W U ] - H - I p u  2 = U2M L 

Multiplying each of these equalities on the right by Ui q, we obtain 

C_ = UIMLU~ j, -H-IW-H-~PC_ = UzMLU-I I (3.12) 

Multiplying the first equality of (3.12) on the left by C and subtracting the second from the result, we obtain (3.11) 
for X = C_. It follows from the first relation of (3.9) that C+ = -H-1p - U2U{ 1. 

We will now prove (3.10). Using the fact that U2 = UIML, we obtain C_ = UIMLU{ 1. This implies the second 
relation of (3.10). Transforming the left-hand side of the characteristic polynomial of system (3.5) 

[L2I"+~,H-IP+H-]WI = (~I"-C+)(~, In-C ) = ~.I"-C+ ~.In-C = 0 

we conclude that the first relation of (3.10) also holds. 

Fundamental theorem. Multiplying (3.1) on the left by H-l(q) and linearizing the second t e rm  on the 
right o f  the result ing equali ty in the ne ighbourhood  of  Q = (q*,/1"),  

H-~(q )L(q ,  el) = F(q,  ~1) = ( f l ( q ,  q) . . . . .  f , ( q ,  ~1)) 

we arrive at a system 

q( t )  + P (q* ,  ¢l*)(tl - el*) + W(q*,  t l* ) (q  - q*)  = 

= - F * ( t ) + g ( q , q * , ( t , ( t * ) + H - l ( q ) u ( t - h ) ,  t>O 

F*(t) = F (q* ( t ) ,  q* ( t ) )  

J~ I[ n I~--~/(q 'q ) I P ( q * , c l * )  = (q* , t l * )  , W ( q * , q * )  = f i  , ", 
i , j = l  j ",j =1 

(3.13) 

where  g is the r ema inde r  t e rm  of  the expansion.  

Proposition 1. T h e  matr ix  

is non-s ingular  for  all t. 

-w(q*,/j*) -e(q*, ci*) 

Proposition 2. The  spec t rum of  the matrix M consists of  simple, real, non-zero  eigenvalues,  n of  which 
are  negative.  

We can assume without  loss of  general i ty  that  the first n eigenvalues,  say )~a(t) . . . . .  3.n(t), are negative.  
By L e m m a  2, 

C_(t) = U2(t)UTI(t), C+(t) = - P ( q * , q * ) -  U2(t)U-ll(t) (3.14) 

where  U(t) = (Ul(t),  U2(t)) T. Let  S+(t) denote  the matrix t ransforming to the Jo rdan  basis for  the matr ix  
C+(t). 
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Proposi t ion 3. For any e > 0 it follows from the inequality IIq(t) - q * ( t )  ll < ~ that 

Ils;'(t)n-'(q(t))H(q*(t))s+(t)-'11 < ,-> 0 

where I is the identity matrix of the appropriate order. 

L e m m a  3. Suppose the fundamental matrix Y( t )  of the homogeneous system of equations :~(t) = 
C_(t)y( t)  satisfies the estimates 

IIY(t)ll < g l e  -z ' ,  t > 0 ;  Ilr(or-'(d < K 2 e  -p( '-s) ,  t > s > O  (3.15) 

where K1, K2, ~ and p are positive constants. Then the solution of the problem 

y ( t )  = C _ ( t ) y ( t )  +r( t ) ;  IIr(t)ll < IIs+lle, y(0) = , ( O ) - x . ( O )  (3.16) 

will satisfy the estimate 

Ily(t)H < q e ,  c, = g 1 +g=lls÷lt/p, t > 0  (3.17) 

Since Proposition 2 holds, system (3.13) may be transformed to 

( f  d l d t  - C + ( t ) ) ( f d l d t  - C _ ( t ) ) ( q  - q*) = 

= F * ( t )  - q * ( t )  + g(q, q*, q, q * ) ,  ( d C _ ( t ) l d t ) ( q  - q * )  + H - l ( t ) u ( t  - h)  

The matrix C_(t) has negative eigenvalues (the matrices C+(t)  and C_(t) are defined in (3.14)). After 
the change of variables 

z ( t )  = s-+l( t ) ( l~dldt  = C_(t))(q(t) - q*(t))  

we obtain 

where 

z = J z  + S-+ I [ -  F * ( t )  - "q*(t) + gi(q, q*, ci, el*) + H -~ u(t  - h)] (3.18) 

d C _ ( t ) .  .- dS+(t)  
g ~ = g -j'[ t q - q ) - - ' -gi  - z 

and J( t )  = diag@:(t) . . . .  , ~ ( t ) )  is the Jordan form of the matrix C+(t) .  

L e m m a  4. Let e > 0 be a given small number and suppose that 

I [ s ; ' ( (q -q*) -c_(q-q*) ) l l  <E 

Then for IIq-q*ll < c:e, cl > o, 

IIs:'g,(q, q*, el, q*)ll < 

N = ,,',lls;'ll(4 +(1/lls;'ll +c,llc-II)~), N, > o  

The proof of Lemmas 3 and 4 is obvious, using the fact that the motion q* is slow. 
We now formulate the fundamental theorem. 

Theorem  2. Let assumptions 1-3 hold. Suppose in addition that  the following assumptions hold: 
(1) the eigenvalues of the matrixM(t) are bounded: 

II~,(oU <- ~m,x (3.19) 
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(2) a positive constant M* exists such that 

F*(O)I] _<M* 
(3) the initial function satisfies the condition 

max{ ]]q(O)- q*(O)ll, Ilz(O)]l } < 8 

(4) the control has the form 

-~'l e signzi (t - h) 

u ( t -  h) = n ( q * ( t ) ) S . ( t )  " " i  . . . . . . . . . . . . . . . . . .  

-ane  signz,(t - h) 

(5) the quantities )qnax, M*, 8, ~} satisfy inequalities 

~,max h < In2 

,~ f ~.max h "~ 

~<(e-~'max h_  \)LmaxE(NM*+2Ne+~max 1)(1 -e-Xmxh))E 

M *  g - ~e xm~h M *  

, , ~Lmax E(e~.m~ h ~max + + NE < ~i + A e < - NE 
e _ I )  e 

where 

A' = q ( l X ' l + . . . + O d n ) ,  i = 1,2 . . . . .  n 

Then the solution of system (3.3) follows the path q*(t )  with the help of control (3.22). 

Proof.  Consider system (3.18) written in coordinatewise notation 

n 

~.i(t) k i ( t )Zi ( t )  + f ~ ( t )  + r i IF, ~ ' " " '"  = - hqo~is lgnz i ( t -  h) ,  i = 1, 2, n 
j= l  

with initial conditions 

where 

z(t) = oz( t ) ,  t ~  [ -h ,O]  

fz( t)  = S - + l ( t ) ( - F * ( t ) - ¢ l * ( t ) ) ,  r(t) = S ; Ig l  

1 t , and hij are the elements of the matrix S+ H-  (q)H(q)S+.  
It is obvious that II z(t) II < ~ for t >_ 0. It follows from Lemma 3 that 

Ilq(t) - q*(t)]l < cle, t___ 0 

35 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

The tracking algorithm. Summarizing what has been said so far, we can formulate the following tracking 
algorithm for a mechanical system. Suppose the maximum delay h in the control of the system is given, 
as is the tracked path q*(t) .  Let the tracked function satisfy conditions (3.20) and (3.24) and the initial 
function conditions (3.21) and (3.25). 
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The algorithm runs as follows: 
1. Fixe > 0. 
2. Find the eigenvalues of the matrix M(t). 
3. Find the matrices C_(t) and S+(t). 
4. Select ~ (i = 1, 2, . . . ,  n) in accordance with inequalities (3.26). 

The tracking problem for a double inverted pendulum. The controllable motion of a double inverted 
pendulum (Fig. 2) is described by the following system [14]. 

H0 + P0 + W = F; 0 = (01, 02) T, F = (F1, F2) T 

where 

2 2 
H = J°+It +mill +m2Ll 

m2Ll lECOS(O 1 -02) 

m 2 L l  l2 Cos ( O 1 -02 )  

m21 ~ + 12 

p =  0 

-OjmzL j l z s i n ( O  l - 0 2 )  

02m2Ll l2 sin( Ol - 02) 

0 

W = 
[[   m/+m2L'sin° JI 

-gm2l 2 sin 02 

where Ok is the angle between the vertical axis and the pendulum link, me is the mass of the link, L~ is 
the length of the link, le is the distance from the centre of gravity of the link to the point of support, Ik 
is the moment of inertia of the link, J0 is the moment of inertia of the drive shaft, g is the acceleration 
due to gravity and subscript, the k = 1 corresponds to the lower link and k = 2 to the upper one. 

We shall assume that the upper link also has a drive. The controls are assumed to be the torques of 
the drives FI and F2 of the lower and upper links, respectively. 

Let us assume that the maximum domain in the system is h = 0.03, and the tracking function is 

I sin(0.1t)-  0.5 
O * ( t )  = I 

I c o s  (0.1 t)e -°'°3t - 0.5 

the initial function is O(t) = O*(t) + (0.001, 0.001) r. 
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The  mechanica l  parameters  of the system are assumed to be: 

m l  = 0.132 kg, m 2 = 0.088 kg, L12= 0.3032 m, L2 = 0.3545 m, 11 = 0.1274 m, 12 = 0.1209 m, 
Ia = 0.0562 kg-  m 2, I 2 0.0314 kg-  m ,  J0 = 6 x 10 -6 kg .  m 2 and g = 9.8 m/sec2. 

The  control  pa ramete rs  are 

)~max =2"42, ~ = 0 . 0 5 ,  cxl = ~2 = 100. 

Figure  3 shows the results of the s imulat ion.  The  n o r m  of the tracking error  for the coordinate  01 is 
0.02, and  for the coordinate  02, 0.025. 
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